Enhanced nitrogen fractionation at core scales: the high-mass star-forming region IRAS 05358+3543

Laura Colzi1,2, Francesco Fontani2, Paola Caselli3, Silvia Leurini4, Luca Bizzocchi3

1 Università degli studi di Firenze, Dipartimento di fisica e Astronomia, Via Sansone 1, 50019 Sesto Fiorentino, Italy
2INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Florence, Italy
3Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching bei München, Germany
4INAF – Osservatorio Astronomico di Cagliari, Via della Scienza 5, Selargius CA 09047, Italy

The $^{14}\text{N}/^{15}\text{N}$ isotopic ratio found for the proto-Solar nebula (PSN) (441, [1]), is higher than that measured in pristine Solar system materials, like comets (~1.40, [2]). This suggests a local chemical enrichment of ^{15}N during the star formation process. Since there is growing evidence pointing out that our Sun was born in a rich cluster, including massive stars (e.g. [3]), we have studied with the IRAM 30m radiotelescope the $^{14}\text{N}/^{15}\text{N}$ ratio in a sample of 87 massive star-forming regions ([4], [5]). In Fig. 1 the overall behavior of the $^{14}\text{N}/^{15}\text{N}$ ratio, for HCN and HNC, across the Galaxy is shown. We have confirmed that the $^{14}\text{N}/^{15}\text{N}$ ratio increases with the Galactocentric distance, as expected from Galactic chemical evolution models. Then, we have observed the massive star-forming protocluster IRAS 05358+3543, combining single-dish (IRAM 30m) and interferometric (NOEMA) observations of the ^{15}N isotopologues of N$_2$H$^+$. The analysis yields $^{14}\text{N}/^{15}\text{N}$ ratios of 100-200 towards the cores, and higher values of >200 in the diffuse clump gas ([6]). This result, which strongly suggests for the first time a local chemical enrichment of ^{15}N at core-scales, help us to understand how the chemical inventory evolves from the parental molecular reservoir to smaller-scale objects.

References