The Sulphur depletion problem in molecular clouds: the H₂S case.

D. G. Navarro¹, A. Fuente¹, R. Le Gal² and the GEMS team

¹Observatorio Astronómico Nacional, Alfonso XII, 3 28014, Madrid, Spain ²Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138, USA

Sulphur is one of the most abundant elements in the Universe [1] and plays a crucial role in biological systems. It is therefore of great interest to track its chemical history in space. However, sulphuretted molecules are not as abundant as expected in the ISM – the Sulphur depletion problem – and there is no clear answer of where the missing Sulphur is yet. To shed light onto this open question, we focus our attention on the chemistry of H_2S in dark clouds. This molecule is thought to be an important reservoir of Sulphur [2], mainly in solid state, locked in grain ices.

Using a subset of the GEMS IRAM Large Program data, which comprises IRAM 30m telescope millimeter observations of CS, SO and H_2S , in this work [3] we have determined the physical conditions and modeled the H_2S chemistry in the TMC 1-C, TMC 1-CP and Barnard 1b cores. The NAUTILUS chemical code is used to model the sulfur chemistry and explore the impact of photo-desorption and chemical desorption on the H_2S abundance. Our results show that chemical desorption is the main formation mechanism of H₂S in dark cores. Our results, at densities $n(H) < 2 \cdot 10^4$ cm⁻³, are well fitted assuming the chemical desorption efficiency as proposed by [4] for bare grains. For higher densities, our model overestimates the H_2S abundance, suggesting that chemical desorption becomes less active. According to our model, the decrease of the H₂S chemical desorption occurs when the abundance of H₂O and CO ices achieves their maximum value in both molecular clouds. We propose that this change in the chemical desorption efficiency is related to a change in the chemical composition of grains, produced by the formation of a thick H_2O and CO ice mantle on their surfaces when n(H) > 2. 10⁴ cm⁻³. Therefore, H₂S might be tracing the snowline of dark clouds. Additionally, our model predicts that H₂S is the main reservoir of S in icy mantles, with a similar abundance in both targets of around one fifth of the Sulphur cosmic abundance. Finally, our model yields an elemental abundance of S/H of around the cosmic value within a factor of ten.

References

[1] Yamamoto, S. 2017, Introduction to Astrochemistry: Chemical Evolution from Interstellar Clouds to Star and Planet Formation

[2] Vidal, T. H. G., Loison, J.-C., Jaziri, A. Y., et al. 2017, MNRAS, 469, 435

[3] D. Navarro et al. (submitted to A&A)

[4] Minissale, M., Dulieu, F., Cazaux, S., & Hocuk, S. 2016, A&A, 585, A24