The Sulphur depletion problem in molecular clouds: the H$_2$S case.

D. G. Navarro1, A. Fuente1, R. Le Gal2 and the GEMS team

1Observatorio Astronómico Nacional, Alfonso XII, 3 28014, Madrid, Spain

2Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138, USA

Sulphur is one of the most abundant elements in the Universe [1] and plays a crucial role in biological systems. It is therefore of great interest to track its chemical history in space. However, sulphurIC molecules are not as abundant as expected in the ISM – the Sulphur depletion problem – and there is no clear answer of where the missing Sulphur is yet. To shed light onto this open question, we focus our attention on the chemistry of H$_2$S in dark clouds. This molecule is thought to be an important reservoir of Sulphur [2], mainly in solid state, locked in grain ices.

Using a subset of the GEMS IRAM Large Program data, which comprises IRAM 30m telescope millimeter observations of CS, SO and H$_2$S, in this work [3] we have determined the physical conditions and modeled the H$_2$S chemistry in the TMC 1-C, TMC 1-CP and Barnard 1b cores. The NAUTILUS chemical code is used to model the sulfur chemistry and explore the impact of photo-desorption and chemical desorption on the H$_2$S abundance. Our results show that chemical desorption is the main formation mechanism of H$_2$S in dark cores. Our results, at densities n(H) < 2 · 104 cm$^{-3}$, are well fitted assuming the chemical desorption efficiency as proposed by [4] for bare grains. For higher densities, our model overestimates the H$_2$S abundance, suggesting that chemical desorption becomes less active. According to our model, the decrease of the H$_2$S chemical desorption occurs when the abundance of H$_2$O and CO ices achieves their maximum value in both molecular clouds. We propose that this change in the chemical desorption efficiency is related to a change in the chemical composition of grains, produced by the formation of a thick H$_2$O and CO ice mantle on their surfaces when n(H) > 2 · 104 cm$^{-3}$. Therefore, H$_2$S might be tracing the snowline of dark clouds. Additionally, our model predicts that H$_2$S is the main reservoir of S in icy mantles, with a similar abundance in both targets of around one fifth of the Sulphur cosmic abundance. Finally, our model yields an elemental abundance of S/H of around the cosmic value within a factor of ten.

References

